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Tests for Sphericity Under Correlated Multivariate
Regression Equations Model

I

Shakuntala Sarkar and P. R. Krishnaiah

I

ABSTRACT

In this report, the authors considered some tests for sphericity

of the error covariance matrix under a correlated multivariate re- I

gression equations I4RE#Fodel. Asymptotic distributions of the test

statistics associated with the above procedures are also derived.
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1. INTRODUCTION

Extensive research has been done in the past on various problems

connected with the classical multivariate regression model since this

model plays a very important role in many problems like prediction. The

multivariate regression model is nothing but a model with correlated

univariate regression equations with a common design matrix. But, there

are many situations when it is unrealistic to assume that the design

matrices are the same. One such situation is when some of the observations

on certain variables are missing. This situation has been dealt with in the

statistical literature (e.g., see Srivastava (1966) and Trawinski (1961)) to

a limited extent. Another situation is when the design matrices of

different regression equations are not the same but none of the observa-

tions are missing. For example, the same independent variables may not

be good to predict each and every dependent variable.

In the sequel, we will refer to the model based upon correlated

univariate regression equations as the correlated regression equations

(CRE) model. In econometric literature, the CRE model is known as

seemingly unrelated regression equations model. Motivated by applications - -

in economics, Revankar (1974, 1976), Srivastava (1970, 1973)., Zellner

(1962, 1963) and some other econometricians considered the problem of

estimation of parameters under the CRE model when the underlying

distribution is multivariate normal. Recently, Sarkar and Krishnaiah

(1984) considered the problem of estimation of parameters under the

CRE model when the underlying distribution is elliptically symmetric.

Approximations to the distributions of the regression vector under the

CRE model were discussed in Maekawa (1982) and Kariya and Maekawa

(1982).
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Kariya, Fujikoshi and Krishnaiah (1983) considered a model based

upon two correlated multivariate regression equations and they refer

to it as the correlated multivariate regression equations (CHRE) model.

Under the above model, Kariya, Fujikoshi and Krishnaiah discussed

various procedures for testing for the independence of the two sets

of variables and also derived the asymptotic distributions of the

statistics associated with the above test procedures. But, no work

was done so far on tests for sphericity under the CMRE model.

In this paper, we discuss asymptotic distributions of various

test statistics for sphericity under a CMRE model. The likelihood

ratio test for sphericity was derived by Mauchly (1940) when the under-

lying distribution is a multivariate normal with unknown mean vector.

Lee, Krishnaiah and Chang (1977) approximated certain powers of the

likelihood ratio test statistic for sphericity with Pearson's type I

distribution and the accuracy of this approximation is good for all

practical purposes. If we know in advance about the structure of the

covariance matrix, we can take advantage of this knowledge to propose

more efficient estimates of the location parameters and better tests

on these location parameters. So, it is quite important to investigate

the structure of the covariance matrix of the underlying distribution

and the independence of the two regression equations. The results de-

rived in this paper are useful in studying the robustness of the LRT

test for sphericity when the assumption of the same design matrix is

violated under the usual multivariate regression model.

-1
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In Section 2, we give some preliminaries and state the problems that

will be investigated in this paper. Throughout this paper, we use

an estimate of the covariance matrix which is based upon the residuals

connected with the regression etqutations. In Section 3, an asymptotic

expression is obtained for the null distribution of the LRT-like test

statistics for sphericity. When the design matrices of the regression

equations are the same, the above test statistic reduces to the LRT test.

For large samples, the asymptotic distribution of the LRT-like test is

chi-square and it is the same as the asymptotic distribution of the LRT

test statistic for sphericity when the design matrices of the regression

equations are the same. But, if we take higher order terms, the expressions

for the distributions will be different. In Section 4, we derive the

asymptotic nonnull distribution of the LRT-like test for sphericity under

the CMRE model tinder fixed alternatives. The expression obtained involves

normal density and Ilermite polynomials. The asymptotic distribution of

the LRT-like test under local alternatives is given in Section 5. The

expression derived in this section involves a linear combination of non-

central chi-square variables. The results of Section 3-5 are derived

under the assumption that the underlying distribution is multivariate

normal. In Section 6, we have shown that the results of earlier sections

remain true when the joint distribution of all the observations is elliptically

contoured. Section 7 is devoted to a derivation of the moments of the

estimate of the covariance matrix when the joint distribution of the ob-

servations on each variable is elliptically contoured but we do not assume

that the joint distribution of all observations is elliptically contoured.

In Section 8, it is shown that the asymptotic null distribution of the

LRT-like test statistic is a linear combination of chi-square variables

with one degree of freedom when the underlying distribution is as assumed

in Section 7.
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2. PRELIMINARIES

Consider two correlated regression equations

Y -XeI +E
1 11 1

(2.1)

Y2 X 2822 + E2

where the design matrices X1: n*x r, X2: n X r2 are known and are

assumed to be of full column rank. The matrices 611: r1 X P1 and

622: r2 xP 2 of the parameters are unknown. We assume that the rows

of E- (E,E 2) are distributed independently as multivariate normal

with mean vector 0 and covariance matrix E, where

- [I(2.2)
t21. £221 i

and E is of order p x p An estimate of E is S where

(Y'QlYl YIQlQ 2Y2)
S-E'E - (2.3)

1Y2Q 2QlYl YQ 2 2

and

- I - Xi (X xi) x. (2.4)

In this paper, we are interested in investigating the asymptotic

null and nonnull distributions of various test statistics associated
2 2

with testing the hypothesis H0: E- o 21 where a is an unknown con-

stant.

We now discuss a representation of S which is used repeatedly in

the sequel in deriving some of the distributions. This representation

is due to Kariya, Fujikoshi and Krishnaiah (1983) and it is given in

Lemma 2.1.
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Consider the transformation

Wi  g Y i i] (2.5)

where M4 is of order (r 0 -r i ) X pi and U is of order (n-r0) Xp . Also

Z (n-r ) xn satisfies Z'Z= Inr T Z.Z' =Q and is chosen in thei L i' i

following special way.

Let ZO: n x (n-r0 ) be a matrrix satisfying

Q0 = z O ' Z'z = In , n0  n-r 0  (2.6)

where 00 = I-X(X'X)+X', and X =[XIX 2 ] where A+ denotes the Penrose

inverse of A. Further, let Q. be the projection matrices onto

L(X) nL(Q.), (i = (,2) where L(A) denotes the column space of the ma-

trix A. Also, let Z. be a matrix satisfying
j

Q =2Z' and Z'Z=I . (2.7)
j i i j r0-r

Then choose

z, = (Z1' Z0 ), z2  (z2, Z0 )" (2.8)

It is easy to verify that

Zizi =1I for i,. = n-r. and Z Z - ii i . I iii

where Q is given in (2.4). Note that under H0 , the rows of W are

independently and identically distributed (i.i.d.) as multivariate nor-

mal with mean vector 0 and dispersion matrix a 2 . Also, W and W2
- pi

are distributed independent of each other.

From (2.3) and (2.4) we obtain



6

WIWI  WINZ 2 W2
S= =G+B, (2.9)

where

G - (UI U2) (2.10)

HM M' 104

B = K 112 .  (2.11)

(:;:#Ml M M2
1  =~ 2

t '1 ?2

These results can be summarized in the following lemma:

Lemma 2.1. The matrix S defined by (2.3) can be written as G+B, where

G and B are defined by (2.10) and (2.11) respectively. Under H0 , G is

distributed as W p(n0, a2Ip), where p =pI+p2 and n 0 n-r0 and row(Mi)

is distributed as N(r0-ri)Pi[0 , r 1, i l,2,... where Mi

is defined by (2.5). Also, G and B are distributed independent of

each other under H0.

3. ASYMPTOTIC NULL DISTRIBUTION OF THE LRT-LIKE TEST STATISTIC

The hypothesis H0 can be tested by using the statistic

I Sisn/2
A n2 (3.1)

(trS/p)n/"

When X 2, the above statistic is the likelihood ratio test statistic

for sphericity. We will derive the null distribution of T -a.T where

T -2 log A

=nip logtrS- log ISI-p logp] (3.2)

I
- -~.----
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and a (n0/n)<1, under the assumption that K=Z Z2=0(1) as n 0 4.

Here we note that A is not the LRT test statistic when X1 +X2.

Let

Sno (3.3)

so that

Gn (a I + (3.4)

So

S n0 2 (I+A), (3.5)

where

rV

n0a

Now

log ISI = plog(n0 2)+log II+AI (3.6)
log +,log (no 2  + trA

logltroSg+log(n0 (3.7)
p

From (3.2), (3.6) and (3.7) we obtain

T1T +v (T1+ T 2 ) ,  (3.8)

0

where

T0 =--I tr V2  (trV)2  (3.9)
2o 4  

P

T1 2 - tr V ] (3.10)3a6 p2

T2 -1 (tr(VB) - tr V tr B (3.11)
a 4p



[.4

The characteristic function of T is

Eeit T*(t) = E[e IT

irT +it itT0 -1
E[e {1+ T}] +E(e T T +(n)

0 0

1 ( 2 (t) +O(no (3.12)

where

it TO1O = E ~e f it TI}](3.13)

0it TO  t

E2(t) - E~e i T2 . (3.14)

2 na IGI 0n/2
Note that the characteristic function of -- log [Wp~n'°21)  n trG)P'

-1 2is 01(t)+O(n01) where G- W(n0 os I). So we know p

that

0l(t) i(1-2it)- f/2 +0(no ) (3.15)

where f - (p(p+l)/2)-1.

Next we consider * 2(t). Taking expectations with respect to M' s2

only yields

E[trVBI= E[tr(VIIMI 1 V12M2K+MI +VM'KM +VM'M)

= trtVE1 1 CMM 1 ) +V 22 E(MM2 )

2 (r0-r)tr V11 + 2 (r0-r2) trV2 2  (3.16)

E[trB] =Eftr MM l +tr MM2 ]

a tr(a 2 (ro-rl)I +a 2 (r 0 -r 2 )I

2 0 1 2  
0r 2 p 2[CJ (r 0- r 1)PI + (ro0-r 2)P21. (3.17)
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From (3.14)

it TO  . (r2-rl)

(t)E e i 0 it (r {P2 trVll-ptrV 2 2 ] (3.18)

0

where

V- ( ll  12j; Vi PXp.v 21 v 221vj ip

Now, note that the limiting distribution of V- (Vjj) in (3.3) is the

-4 -4distribution of V = (vij), where v iiN(0,2o ), v j~N(O,o ) i j and

vii (i<j)'s are all independent, and that the density f of V can be

expressed as

f(V) = fo(V) +--- f(V) +-L f2 (V) + . ..

no

where f0(V) is the p.d.f. of V. Next, let

*' =V*

=XP 1 2'"1Xp 2  P

(Vll-V 22" ... Vpp v 12 9 .... Vlpov 2 1 '' v 2p 1' ' 'vp I ''v pp - I) . (3.19)

Then the limiting distribution of v * is

N 2 (0, D ) (3.20)
p

where D -Diag(2 
4 ,.. ,2o 4; ,

4
.. a )

a

Further note that

TO 4ii P1 '

0 2 i=j ij i iv jj i ]

1 *'* *
4 v A v , say (3.21)

2w

where A* depends on p.
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So,

I *t - ItIt I

* 2 (t) C _ expl- I v* (Dl - - - A) v* 1p 2  i-Pi V dv +O(n-1
2 20 4p +1 p 1 0

0 + O(n (3.22)

Using (3.12), (3.15) and (3.22), we get

*(t) = (1-21t)- f/2 + O (n ;1 (3.23)

where f - (p(p+l)/2 ) - 1. Now, inverting the right side of (3.23)

yields the following expression for the asymptotic distribution of T:

Pr (T<x) -Pr (Xf _x) + O(nol),

where f - (p(p+l)/2) - I

4. ASYMPTOTIC NON-NULL DISTRIBUTION OF THE LRT-LIKE TEST STATISTIC

UNDER FIXED ALTEPYATIVE

Let us consider the alternative H not HO . Since the test sta-

tistic A is a function of the eigenvalues of S, we can assume, with-

out loss of generality, that

Z= D = Diag(lx 2, ... ,Xp). (4.1)

Also, G, B, i's, n0 are defined as in Section 2.2.

Let

V ,/ no - Dx). (4.2)0 no0

Under H , .G-Wp(n,D A). Now

S = ( D  +V + )
in 0  0

n n0 D X ( + A), (4.3)



where

A - 1 -1V+ ~B

0 0

log ISI plogn 0 + logXi+log II+Al

tr- n A + tr C), C B0 1 nF
S = n0i~li +tC),C- (vn_ 0_B

0

fn 0PX( + trC) (4.4)
pX

where pX = A1*+X . Also,1**p

plogtrS= plogn0 +p l ogp+p l ogT+p l og(l+r--). (4.5)
pX

Hence

T - n[log p-+ plog (1 + tr_ )- logIT+A 1]. (4.6)
f=I~i px

Now, let

On -p

vn [-T- log-

tr C- vo [p log (1 + -)log II+AI]

T + -1- (T+T + 0(n 1) (4.7)n0 / (TI+T2) 0

0

where

T (4.8)

v2 1 v vd)2
T2 -2 P 2 (4.9)ij 2 p2
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T2

The characteristic function of T is

(t) +2(t) +0(n I ) (4.11)
2 0

where

(t)= Z[e 0 (1 + L T)] (4.12)

0

4I2 (t) = Ee it T2]. (4.13)

0

Defining V* as in (3.19), we see that the density of v* is

N 2 (0,A) + 0 (n-1/2), where

A-Diag(2X 2XpX1A 2  1kp 2X19 .... A A x pp1). (4.14)

Let

a i 1(1)p (4.15)

and

' = (al,a2,. ...a p,,O,...,O). (4.16)

JXP
2

From (4.8), we know that TO = a'v*. Also from (2.9), T can be written

2 2

as v*'Qv*, where elements of Q: p xp depend on AI,... , p and p. Then

from (4.12),

ita'v*

4l(t) - E[e " " (1 + it v*'Qv*)]

- - tr (A)+ (it) 3 a'AAa+ -  4 (a(.)

= ~ r /-- ](.7

n-/r-



13

We now consider 0 2 (t). Taking conditional expectation with re-

spect to Mi 's only yields
PI

E (T2) = E aiii + 1 aibi1 ]
i1l i=Pl+1

p 1 1

- ai (r0-r1 )L + ai(ro-r2)Xi
1=1 i=pl+1

Pi

(r 0-rl) iaX + (r0- j ap X0 1 i~l i 0 i i+ i

K 1 (rO , ir , r2 a i Is , li' S p , 2)

-K I, say. (4.18)

Hence

2 (t) = it KI Efeit a' v*

0 
2t

- a'Aa
= it K e . (4.19)

I
0

Finally, from (4.11), (4.17) and (4.19). we have
2 2

) 2e 2 [l+it g+(it)- ] +0(no (4.20)
1 3 (420

0 0
where 1

2 ( xi 2

I=a'Aa = 2 (l

g = KI+tr(SIA) (4.21)

+4 3 3
3 a3 i a
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2

Note that under H1 , t # 0, so that inverting the rightside of

(4.20), we have the following theorem for the asymptotic distribution

of T.
-P

Theorem 4.1. The distribution function of T* - T/T - n (iT- log T)/t

under Itl can be expanded for large n as

Pr['r*: x] =(x) - __ (g V(1) (x)+3 I + 0( )

0

where ()(x) is the j derivative of the standard normal distribution

function 4(x); and gl,g 2 and t are given by (4.21).

5. ASYMPTOTIC NON-NULL DISTRIBUTION OF THE LRT-LIKE TEST UNDER
LOCAL ALTERNATIVES

We assume the same structure of : as in (4.1), but we consider

local alternatives

II( A = A -- , i=l(1)p (5.1)

0

where 0.'s are ,not all equal. Thus, under H ,

D Dl

DA XI + . (5.2)

0
where DO 

= Diag(01,12 ... , 0p). Under It0,

W I+D0 . (5.3)

Define V as in (4.2), where DA is given by (5.2). We then have

S - n0 X(TI+A), (5.4)

where A - ((V+D U)/A n0) + (B/A n0 ). Expanding log ISi and logtrS

in the same way as before, we get
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n
T=~2a log A, a--- < 1

= T +--(T +T2 ), (5.5)

0

where

(trV+ e )

TO [tr(V+D) 2 _ 1 (5.6)0 2X 2  0P

(trv+ 1 0. 3

T 2i 1 - tr(V+D 0) 3 (5.7)3A, p1 
tr B(trV+ 0ot)

[tr B(V+D ) - 1 (5.8)

The characteristic function of T, as before, can be written as

(t) - ¢l(t)+ W2(t)+O(no1), (5.9)

where 01 (t), 2 (t) have the same expressions as in (3.13). (3.14)

respectively.

Now, 41(t) + O(n) is the characteristic function of

-2 n0 /n log[ In where under Hot G- W [n0 (i +L-)], ando(trG )p , whr une/ 0 ~pnX p  n0

hence W(t) is known as (see Fujikoshi, 1981)

l "f(t;62/X2)[1+ X 2 3b (1-2it)-J]+0(ng) (5.10)

whre1(t) isth chrcersi fucio of a ONt (5var )
2where * f(t;A) is the characteristic function of a noncentral X var-

iable with f d.f. and noncentrality parameter 2 /X 2 and

f (p+2) (p-i)
2

62 1 2_-

6 [ 2 1Ltr D - p- (tr D0 2

I(2tr D3 3p- (tr D )tr D2+p 2(tr D) 3
0 0 [t8
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1 12 -2 3}

b, ={ tr D 3+ 2 p-(tr D )tr D2 - p (tr D)3
1 2 C)C C

trD 3p- (tr D) trD 2+2p- 2(tr D)3 }
2  0O .

Next consider ,p2(t).

Taking conditional expectations with respect to Mi's only we

have

(r 2 -r 1) -1/2
E4T 2 ) = (P2 -PltrV22 + 0(n I  (5.11)p [ tr VIIptV 2 ] ~ 0

where

V - (V+D = vi) 1 '
V21 V221

Vij: PiXpj. Writing V - (vii), see that

V 1 i v 1  + Oi, if 1,2,...,p

V = vij , #j.

As before, we write T0 ffi - , where
2A2  

'

v*' = ... v*2)
lxp 2  P

=M (Vill"' .. ,pp.,V12 .... Vlp9 .... 9VplI .... IVp P-1 ) l (5.12)

and A0 is a function of X, and p. Further note that,

E(v ) = (5.13)

Var(v*) A, (5.14)

where
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(.o' = ;  0,.... ), (5.15)

a 1xp2

and A is given by (4.14) and (5.1).

Since X = x + 0( 1
A;-vno
0

A no Do = Diag(2X2  ,2X 2 ; 2 ,  x2) (5.16)

22
The limiting distribution of V is that of Z-f (z ij where Z II N(Oi,2X2)

Ztj .N(0,2), i2 j and Z i(i<j)'s are all independently distributed.

Hence, for large n

v*-N 20"e' D0), (5.17)

p

where v and Do are given by (5.15) and (5.16) respectively.

llence

rf t Z,2?2 W 'AOi* - - 0--"E)'D;
1 Q*-p0) .-

I (r2- rp it 2

W- le c'i* d-Z'*
'2(  (/2,F ) p2] o1/2 p n ec*d*,

where

c'p (p C1 - Ef 0 C2 (5.18)l;p2 2-pl' Pl-P2' -p2 -

1 2 p -p

(r2-r1 ) it i l It D AF1/2 ,1 -
p____ - i j DoA0

]-I /2 exp[- 1  U0  'D 0P-v' lv )]c'v
PA /- A 2 002-0 0-0 -0 -e -0e

0 (5.19)

where

0 1 it ) (5.20)

v= iQ
r 0 A0

=j -Ct" (DoAo r I0
(5.21)

0i A2
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and c is givet by (j.18). Note thot

ii II- - V v )
a-( U '0

2 (A ) 0 r -1 (5.22)

Using (5.21) and (15.22) Lit (5.lJ) we have

(r 2 -I It ) - 1 k, i (t)r(A r rD'!
2(t) -It I --- li Jo^Aj I/?f I- rx-'ioro-"

2A 4-11- 1 lA2

U

( it)r r

6. THE DISTRIBUTION OF THE LRT-LIKE TEST STATISTIC WHEN THE JOINT
DISTRIBUTION OF OBSERVATIONS IS ELLIPTICALLY CONTOURED

We will first discuss briefly elliptically contoured distributions.

If the random vector x: p x I has the characteristic function of the

form exp(i t' P) j (t' : t) whtere p and t are of order p x 1, then x is said

to be distributed as elliptically contoured distribution and is denoted by

EC(uE;*). Various properties of elliptically contoured distributions are

discussed in Anderson and F'ang (1982), Cambanis, Huang and Simons (1981)

and Kelker (1970). Now, let

E = (e-,...,.n ) = "

(n)

where e*' - (vecE')' =(e ) We assume that

e* ( Enp(0, I n 2*; ) and E* is proportional to E given by (4.1).

Then, it is known (see Cambanis, Huang and Simons(1981) and
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Anderson and Fang (1982)) that

d
E fR U A,

where A'A - E*, A : p x p, U n x px Vec. U u(n p ) distribution

function of R is related to 4 and R Ls independent of U ; here U(np) i

np-dimensional column vector which has uniform distribution on

the unit sphere. In addition, "X d Y" denotes that the

distribution of X is the same.as that of Y. Let us

write A- (A A ) , p - 11 + pZ. Then we have E R U AUA E d

nxp I nxp 2

Since

( EQ1El EjQ 1Q2E2\

S C- (E 1 1'. EQQ2E2 ) (6.1)

1 ' Q , Q I r , E 2' 2 E 2

we get

trS - tr(E OQ1 E- + E'2QZE 2 )

d 2 I
d R tr(AU'QUAI + A U'Q2UA2) (6.2)

and

ISI IEIQIEIIE Q2E2 - EQQ 1 1 (E;Q1E)-E;Q1 Q2E21

SR2PlA'IU'(UA1IIA U'QUA2 - A2U'Q2QIUAI(AiU'Q1UA1) A'U'QIQ 2UA21

(6.3)

Hence

ls d. I^ U' 1UAjlAU 'QUA2 - A' U'Q2QIUAI(AIU'QIUAI)-AiU'QIQ2UA2I

(trS)p  [tr(AU'QjUAj + A. U'Q2UA2 )]P1 2 (6.4)

Substituting this we see. tut A is independent of R 2 . Hence the distri-

bution of A will he the same ;is in the normal case. Thus the asymptotic

null and nonnull distributioit of A tinder assumption (6.1) is the same as

in earlier sections.
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7. MOMENTS OF THE ESTIMATE OF THE COVARIANCE MATRIX WHEN OBSERVATIONS ON
EACH VARIABLE ARE ELLIPTICALLY CONTOURED

In this section, we assume, instead of (6.1), that the covariance matrix

of e' is Z A I where Z is given by (4.1), e' = (eI,...,e') and

-ECn(O,  In; *) (7.1)

where A* 4 A) j - 1....

It can be verilied easily that

E(e Ae ) - -20'(0) AttrA (7.2)

E(e Aej) - 0, i 0 j (7.3)

Var(e Aei) - 8 *'(O)2A 2 tr A2 + 12(0"(0) - 4'(0) 2)A 2 a 2 (7.4)
iI

for A a A' w (at j)
n 2 ' {YJ i 2 ] ' £  j  75

Var(e Aej) - 4 X*A*['(O)j all + (0)2 a 1 i . (7.5)

Note that S E'-
!e QIl I  e'Qepl e'QQ 1 . . . e QiQ2e p

•p " ' ~2 I1  - -pP+

e!;,lQ2QI!I-e-pl~lQ2Ql ,t1 p 1 Q2!Pl+1 • .P' ",+0Q2t

e',Q2Qe1 . . e'qQQe e;Q2epl~ • . . eQ2ep
tP-2Il 1lp ~ Q! 1+1SQ!

Hence we have
E(sl) " -2$' (0)tn 1 , L 1, 2 ,...,pl

4-2$'(O))~n2 , i p1 +1,....p (7.6).

where

n I = n r I , n 2  n - 2

E(si) 0, 1 # J. (7.7)

I I II I I Ii Ii
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2 2 + 2 2 n()I 41(o) X n +12( p"(O) ).\* q

13( . n (7.8)

8 iO)2X 2+ 12( "(0)-o'(0))A 2 (2)2

i = pI+1,...,p

Q=( 2))
where Q=( ij, 2=(qi

-4X*X*[ "(O) q (1)
2 + 01(O) 2Y q (1)2

ij CIaL c ctS

p.1 4X*X*[O"(O)lq (2 )2 + 01(O) 2 1, q (2)2j

Var(s )j a ( C (7.9)

ii iJ = p +l,....,P; i~j

* / 4X**[ u(O) q) + '(O)JI q( 3 2

i =1,2,..p 1 ; j-=p1 +1,..., -p

j or L p +1,...,p; jl=,2,...,p1

where Q = (q ())

ij 1,,... p i #j

ii i(0) 
2 )jq( 2)2  (.0

Cov(S S )= OLa (.0

*i,j = p1 +1,...,-p; i0 j

CL . jcia cict

-12..p9jp+1 a
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For simplicity of notation, let

r1 =r2 => n1 n2 = not say

where no n-r.

Hence

where Xi -2 '(O))X*, i= 1,2,...,p.
i i

Let us define

Z /no Dx) (7.12)

Then

E(Z) 0 (7.13)
PXP

(84'(O) 2X*2 l2(0"(O)- (0) )X2 q In

Va r@ ( = 11 1,2X. 1. 22.n(2) (7.14)

ii8 '()2 + 12( "(O)-01(o (2)2 I
1 1 1 1 0

L j = llp+ ; I # j

4X*X[ "O~yq )2/n0 + 0' (0) 2 q (1)2 InI
i C LL 0aa cj 0

i1(1 IP 1 ; ijp+..,

or~ ija i~ 1+,.p 0=(1
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i,j =1,2,...,p; i Ajq ,, 2 ()2,

Cov(z ii, z )a 0 (7.16)

i,j =1, ..... - Pl; i j

2 q(1) (2)/
i cta ~CLI

All other elements of Z are uncorrelated. Now make the following

assumptions on the design matrices Q1 Q 2'.
n (1) (2) ni (()2 2

Each of quq q a 0 no

jl ,2,3 are of 0(l) and we write for large n

a2

n 0 = ' ~=~ 2 ~3 (7.17)

and

qo (1) q(2)/n = K

ota aaa 3

Note that the limiting distribution of Z is the same as that of

Z=(z ) -where

2
S o---N(,2X ) , (7.18)

z N(,A / j 1,2,3 (7.19)

where
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1 + (0"o)/(o)2- (1) l )

(7.20)

I+ j ()/O'(0)_ 2 K (2)

i P1 +
1 ,...,p

and

(1) + (0)
LK 2 +0()2 K 1 i~j=1(1)p1i(2) , (0) 2

K (2) +of"(0) .(2) i'j pl+l,..., pS[K + ,(0)2 1 i 1  (7.21)

3) K3)1 i=1(1)p, j(p0+, .(p2 , 0(0) 2  ....

j-l(1)Pl, iinpl+l,... p.

Also,

Cov(z iij) = A X 0(0)12 -)C, i0j (7.22)

where

K i,j - l(1)p1

C K 2  , ij - pl+l,...,p (7.23)

K3  , i = l(1)p1 ; j p +l.....p.

All other elements of Z are uncorrelated.

It is known that, all fourth order cumulants, if they exist, can

be expressed as a function of a single parameter, k, which characterizes

the kurtosis of the distribution.

For E as in (4.1), the only nonzero fourth order cumulants of the
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elements of E are

i E(e A2  P l(1)nK4  ti) -

1,, 2 1 - l(1)p
i .,(0)2

kij E(e2  2 E( 2 Me 2

22 = E((e) - E) E Z 1(1)n,

i,j = l(1)p, i & J.

Pi 2

All other fourth order cumulants of eij's vanish. Note that K4/Xi2

is the kurtosis of the marginal distribution of ith component, and

1or convenience define K2/Ai - 3k, i - 1 (1)p; where k characterizes

the kurtosis of the distribution. It is clear from above that

k (-(0) - 1), so that

K A A k.
22 . k

The parameters in the asymptotic distribution of Z can be expressed

as functions of k and Ails only.

8. ASYMPTOTIC NULL DISTRIBUTION OF THE LRT-LIKE TEST STATISTIC WHEN THE

OBSERVATIONS ON EACH VARIABLE ARE ELLIPTICALLY CONTOURED

Let S0 - S/no, then from (7.12), we have

s 0= DA + Z/ (8..)

The LRT-like test statistic for sphericity is A 
•n/2

(tr So/p

We are interested in the asymptotic distribution of T P -2loS A, Sup-

2
pose, under Ho, A =....= p T . Then
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So  G 2(I+A), A = Z/o2 An0O

%iogls 0j - p logo 2 + logII+AI

logtrS 0  loga 2+logp + log (1+ tr.A
0 p

Hence,

T = n[p log(I + tA) oglI+A1],
p

no  n o
let £ = - T, -< 1, being the correction factor. Then we haven n -

1 tz 2 - (tr Z) 2  -1/2
T [tr Z + o(n ) (8.2)2(Y4  P 0

So the characteristic function of T is

E(eit T

" eEit T0  + O(n01/2 (8.3)

where

pT tr Z2  (tr Z)2  (8.4)0 2o 4  P "

Let us write this as z'Anz, where

- -p, Z 1 2 P .. z1 ;z2 1 , .. .. ,Zpl,...,,Zp(p_l)) (8.5)

lxp
2and A is a matrix whose elements depend on p and a. We assume that

the errors are distributed as in Section 7. Then, asymptotically,

z- N 2(0, 0), (8.6)

p
where Q (w ij)

wij are given in Section 7, with the restriction that X, =a for

i - l(l)p. Hence,
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t(t) V E[ " + 0 (n 1/2

- 1i- 21t A0 21"1/ 2 . (8.7)

Inverting the rightside of (H.7), we get

Theorem 8.1 The limiting nuil distribution as n0  of T is that of

a linear combination of chi-squares with one degree of freedom and

the coefficients depending on the fourth order moments of the obser-

vations of Lite parent population, which are functions of a2 and k.
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